

Muffled Murmurs: Environmental effects in the LISA stochastic signal from stellar-mass black hole binaries

This work was supported partly through ERC-2018- COG GRAMS 815673. For complete funding acknowledgements and affiliations, refer to the paper (scan QR code)

Ran Chen, Rohit S. Chandramouli, Federico Pozzoli, Riccardo Buscicchio, Enrico Barausse arXiv:2507.00694

Background

- ·Stellar-mass black hole binaries (sBBHs) that remain unresolved are expected to produce a stochastic gravitational-wave background (SGWB) detected by LISA [1,2].
- ·Astrophysical environmental effects [3,4], such as **gas dynamical friction** and **accretion**, can induce additional energy dissipation and leave detectable imprints on the background.
- How can environmental effects be modeled and analyzed using Bayesian methods?
- Can environmental effects be measured and distinguished from vacuum?
- Is it possible to probe a sub-population of sBBHs undergoing environmental effects?

Environmental-effects imprint on the SGWB

Assumptions:

- sBBHs form in gaseous environment (such as accretion disk of AGNs).
- The SGWB is Gaussian, isotropic, Unpolarized, and stationary.

Dynamical friction induces a turning point in the optimally sensitive part of the LISA band, while accretion does not.

Detection and Parameter estimation

We perform injection—recovery studies to assess the detectability of environmental effects using model templates and the public codebase **Bahamas** [5].

To isolate the impact of the Galactic foreground, we run a separate analysis assuming its parameters are perfectly known.

Parameter estimation using RPLP model

Upper bound on density from vacuum SGWB

Systematic biases by neglecting environmental effects

Phenomenological parametric

- Rational Power-Law (RPL model)

The RPL model is constructed based on the asymptotic behavior of background spectrum in low and high frequency regimes.

$$\Omega_{\rm RPL} = \frac{A_{\rm vac} f^{\gamma}}{1 + A_{\rm m} \alpha f^{\beta} [\ln(f/1 \text{Hz})]^{\kappa}}$$

Mapping to dynamical friction and accretion:

Parameter	Dynamic Friction	Accretion
α	ρ	$(5+3\xi) f_{\mathrm{Edd}}/ au$
$oldsymbol{eta}$	-11/3	-8/3
κ	1	0

· Rational Power-Law + Peak (RPLP model)

To improve accuracy of the RPL model at intermediate frequencies, we introduce a Gaussian correction as follows:

$$\Omega_{ ext{RPLP}} = rac{\Omega_{ ext{RPL}}}{1 + \mathcal{G}(f, lpha)}$$

Sub-population investigation

Only a fraction of sBBHs may form in gaseous environments.

A phenomenological mixture model to capture the environmental imprint from this sub-population: $\Omega_{\rm Frac}=p_{\rm env}\Omega_{\rm env}+(1-p_{\rm env})\Omega_{\rm vacuum}$

Conclusion

- · Environmental effects can be modeled with a parametric template and inferred using Bayesian methods in LISA band.
- · Dynamical friction is measurable and distinguishable from vacuum for $\rho \sim 10^{-10} 10^{-9} g/cm^3$, with Bayes factors up to ~ 60 .
- · LISA can constrain environmental effects for a sub-population of sBBHs forming in thin accretion disks around AGNs.

References

- 1 Babak, S., Caprini, C., Figueroa, D. G., et al. (2023). Stochastic gravitational wave background from stellar origin binary black holes in LISA. JCAP, 2023(08), 034.
- 2 Amaro-Seoane et al. (2017). Laser Interferometer Space Antenna. arXiv:1702.00786.
- 3 Barausse et al. (2020). Prospects for fundamental physics with LISA. Gen. Relativ. Gravit., 52, 1–33.
- 4 Amaro-Seoane et al. (2023). Astrophysics with the Laser Interferometer Space Antenna. Living Rev. Relativ., 26(1), 2.
- 5 Pozzoli et al. (2025). Bahamas: Bayesian inference for astrophysical stochastic background. arXiv:2506.22542

Contact information: Ran Chen ranchen@pmo.ac.cn