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Background Detection and Parameter estimation
-Stellar-mass black hole binaries (sBBHs) that remain unresolved are expected to We perform injection—recovery studies to assess the detectability of environmental
produce a stochastic gravitational-wave background (SGWB) detected by LISA [1,2]. effects using model templates and the public codebase Bahamas [5].

To isolate the impact of the Galactic foreground, we run a separate analysis

- Astrophysical environmental effects [3,4], such as gas dynamical friction and .
assuming its parameters are perfectly known.

accretion, can induce additional energy dissipation and leave detectable imprints

on the background. Parameter estimation using RPLP model
. How can environmental effects be modeled and analyzed using Bayesian methods? : F’f"; =10"gem™
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Assumptions: 8 o
- SBBHs form in gaseous environment (such as accretion disk of AGNs). log1(0/ p0)
- The SGWB is Gaussian, isotropic, Unpolarized, and stationary.
Upper bound on density from Systematic biases by neglecting
vacuum SGWB environmental effects
Dynamical friction (-5.5PN) Eddington accretion (-4PN)
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Dynamical friction induces a turning point in the optimally sensitive part of the LISA N G AN
band, while accretion does not. y
Phenomenological parametric Sub-population investigation

. Rational Power-Law (RPL model) Only a fraction of sBBHs may form in gaseous environments.
A phenomenological mixture model to capture the environmental imprint from this

The RPL model is constructed based on the asymptotic behavior of background sub-population: Qfrac = Penv2eny + (1 - penV)Qvacuum

spectrum in low and high frequency regimes. N
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Conclusion

To improve accuracy of the RPL model at intermediate frequencies, we introduce a

. . - Environmental effects can be modeled with a parametric template and inferred
Gaussian correction as follows:

using Bayesian methods in LISA band.

g 0 A - Dynamical friction is measurable and distinguishable from vacuum for p~1071% —
OQrprp = —— 10~%g/cm?, with Bayes factors up to ~60.
1+ G(f,a) . . | |
_ 9 / - LISA can constrain environmental effects for a sub-population of sBBHs forming

In thin accretion disks around AGNSs.
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